
MoWare CMD2 2017

Dokumentation

MoWare CMD 2017

(1) Command Patterns

(2) OFXBatchJobs

(5) Lessons learned

(4) Additional Features

(3) OFXTestSuit

Command Types Moware CMD RC38

SEARCH_COMMAND

R/O Session

GRAPH_EDIT

GRAPH_OWNER

Session

GRAPH_EDIT

Search Command to look for entities

> can not modify entities
> load entities in read-only mode
> session can not start transactions

> filter-search pattern as only applicable pattern
 Page 1: User enters search criteria
 Page 2: User receives result-list

> Internal session-keystores are cleared before
 Any page-init occurs [allow for
 reload functionality]

Graph_Owner Command to modify graph of entities

> Graph_Owner provides a read/writeable session with
 transaction
> Checkout entities and assemble them to a graph
> Visualize this graph within a page of the
 Graph_Owner
> Provide a “Save & Close” Button to let the user
 save the current graph

> Use Graph_Edit commands to edit the graph directly
> Only one Graph_Edit (modal prompt window)
> Shared session between Graph_Edits and Graph_Owner

Summary command types

> SEARCH_COMMAND
 Read only session, keystores are cleared on every page-init

> GRAPH_OWNER + GRAPH_EDIT
 GRAPH_OWNER comes with a read/write session
 Only one GRAPH_EDIT can be executed at the same time

> GRAPH_OWNER_MODAL
 Behaves exactly like a GRAPH_OWNER, except that users are prevented from switching
 to other tabs before terminating the GRAPH_OWNER_MODAL

Command Patterns

● Do not repeat yourself in code (command flexibility, minimize
num of commands, enhance maintainability)

● Agree on a common application structure, a common style on how
to handle recurring requirements

● Repeatable common solution for all apps
● Articulate app situations more clearly, to allow refacts in future
● Division of concerns: separate domains for reusage
● Allow Top-Level testing of command sequences
● MoWare Support for patterns arrangements are well tested

COMMAND TYPE

<steps>

Session

COMMAND TYPE

<steps> COMMAND TYPE

<steps>

The concept: Command in Sequenz ausführen

GRAPH_OWNER GRAPH_OWNER GRAPH_OWNER

Wizzard ?

OpenXava supports getNextModule()
Module END, RUN getNextModule()
MoWare:
GRAPH_OWNER -> GRAPH_OWNER -> GRAPH_OWNER ??

Grph-EditGrph-Edit Grph-Edit

1. SP - Standard Pattern
2. W - Wizzard Pattern
3. UD - Update Pattern
4. FSP - Filter Search Pattern
5. MEP1 - Multiple Execution Pattern (GRAPH_OWNER)
6. MEP2 - Multiple Execution Pattern (GRAPH_EDIT)
7. PP - Print Pattern (aka Status Change Pattern)
8. SGO - Sub Graph Owner Pattern
9. CEP - Create Edit Pattern

10. THP - Task Handling Pattern
11. GCP - Graph Composition Pattern
12. BEP - Base Entity Pattern
13. BJH - Batch Job Pattern

Document Centered Applications

MAIN DOC
GRAPH_OWNER

Main Editor for entity

checkout graph
------------------------>
validity checks
adjust graph
change state
checkin graph

Document with Information
Modelled as a Graph

Checkout the Document - give me the document
Checkin the Document - give the doc back
Version / Unit of Work / Transaction

ACID paradigm
Atomicity - all or nothing
Consistency - one state to the next
Isolation - concurrent execution
Durability -fully persisted

Grph-Edit

Grph-Edit

Grph-Edit

Grph-Edit

Session

1. Pass KEY of document to GRAPH_OWNER
2. Checkout document completely
3. <Adjust Graph according to Business Logic>
4. <Validate Graph according to Business Logic>

5. (let user edit the document)
6. <Adjust Graph according to Business Logic>
7. <Validate Graph according to Business Logic>
8. Checkin document completely

9. Forward some information from document to
application (in order to update states)

Note:

Stammdaten etc?
Changing Artikel Info during Day?
Scopes etc.

Document Centered Applications

MAIN DOC
Main Editor for entity
GRAPH_OWNER

checkout graph

adjust graph
validity checks

------------------------>

validity checks
adjust graph
change state
checkin graph

Session

1. Pass KEY of document to GRAPH_OWNER
2. Checkout document completely
3. <Adjust Graph according to Business Logic>
4. <Validate Graph according to Business Logic>

5. (let user edit the document)
6. <Adjust Graph according to Business Logic>
7. <Validate Graph according to Business Logic>
8. Checkin document completely

9. Forward some information from document to
application (in order to update states)

Entity: Order Entity: OrderPos

OrderService
// access infra, mappings etc…
// domain calculations (order +
order pos) at one place

calculateSum()

complete()
validate()

Grph-Edit

Grph-Edit

● Single MAIN_DOC per Domain ?
● Update Domain after executing any command in MAIN_DOC
● Validate Domain continiously
● Never deviate from this concept (sub-go?)

SP - Standard Pattern

SEARCH_COMMAND

(1) Specify Filter
(2) Calculate ResultList
(3) Allow Graph_Owners
 to edit entities
(4) Replace entities in
 ResultList due to sel. up.

MAIN DOC
GRAPH_OWNER

Main Editor for entity

checkout graph
------------------------>
validity checks
adjust graph
change state
checkin graph

Edit Documents of a certain type - The MAIN_DOC GRAPH_OWNER

> Handles Session + checkout / checkin of graph
> Has a single Page
> Uses cancel, Flag and Conditions
> Must be available almost always! At least in RO mode!

Grph-Edit

Grph-Edit

Grph-Edit

Grph-Edit

SessionRO Session

(1) Checkout Graph
(2) Adjust & Validate Graph
(3) <User can edit>
(4) Adjust & Validate Graph
(5) Checkin Graph ??? Right now, we can not come up with validation

checks during page init / command init to warn
user on problems with graph?????

Right now the assumption is that all existing
graphs are valid, were validated!

SP - Standard Pattern (SUOP)

SEARCH_COMMAND I

list<Entity1>

MAIN DOC
GRAPH_OWNER

Main Editor for entity

checkout graph
------------------------>
validity checks
adjust graph
change state
checkin graph

The Selection Update On Parent

> Goal: Update information in search-result after main-doc execution
> Replace complete entity in search commands graph
> Throw away old entity, assign entity from main-doc
> New: Multiple selection updates possible for different SEARCH CMDs

Grph-Edit

Grph-Edit

Grph-Edit

Grph-Edit

Session

RO Session

SEARCH_COMMAND II

list<Entity2>

RO Session

MAIN_DOC Graph Owner

class RekoAkt {

public RekoAkt flattenGraph(void) {

this.referenz = null;

this.list.clear();
 this.list = null;

return this;

}

}

Command selection update: akt.flattenGraph()

Standard Pattern: Graph_Owner in modal mode

Application

Graph_Owner started in a tab as usually, but in “modal mode”

> User can not navigate to other tabs
> MainMenu and accessible commands are disabled
> Only Hotkeys pertaining to current Graph_Owner tab are delivered
> Only Graph_Edit commands can be started from current Graph_Owner
 - no other Graph_Owners in other tabs
 - no other Search in other tabs

> final_ok, final_cancel, etc. handled as usually
> when “modal” tab is closed, application is unlocked, i.e. tabs enabled, menu and hotkeys enabled

START Edit Extras Help

Stammdaten Wartung
> Artikel bearbeiten

FSP - Filter Search Pattern

SEARCH_COMMAND

(1) Set <default> values for all filter properties
(2) User can adjust values of filter properties
(2) Calc result and assign MyFilterVo.resultList
(3) Graph_Owner might edit result entities
(4) Graph_Owner issues selection-updates for Search_Command Page2 (bound to MyFilterFo.resultList)

Search Entities with user given filter

Page1: Filter DelegateForm
Page2: Result Table

Page1 Filter DelegateForm

boundTo: MyFilterVO

Delegate 1
Delegate 2
Delegate 3
…
…

Page2: Result Table

boundTo: MyFilterVO.resultList

Entity 1
Entity 2
Entity 3

ViewObject MyFilterVO
 Filter Property 1
Filter Property 2
Filter Property 3
+ ResultList

RO Session

Do not pass entities across sessions ! (pass id only)
Do not issue selection-updates with huge object graphs !
?

Nach Dokumenten suchen
> Akte suchen

W - Wizzard pattern

GRAPH_OWNER / GRAPH_EDIT

(1) one single command handles multiple UI

(?) division of concerns? Does the data structures and pages relate strongly to each other?
(?) Jumps forward/backward are possible, but is it necessary?
(?) railway oriented programming - cancel / done stops whole command

Wizzard to enrich information across multpile pages

Page 1: UI entry
Page 2: again UI entry
Page 3: more UI entry / editing

Page1 UI entry

boundTo: Graph Entity

Delegate 1
Delegate 2
Delegate 3
…
…

Session

Page2 UI entry

boundTo: Graph Entity

Delegate 1
Delegate 2
Delegate 3
…
…

Page3 UI entry

boundTo: Graph Entity

Delegate 1
Delegate 2
Delegate 3
…
…

Mehrstufig erfassen
> Complex Graph_Edit

UD - Update pattern

GRAPH_OWNER / GRAPH_EDIT

Use UPDATE hotkey to issue conclusions on “delegate leave”
> Do not issue this conclusion on ESC ?
> No business logic / code in UI, no java hooks

Page 1: UI entry
Page 2: again UI entry
..

Page1 UI entry

boundTo: Graph Entity

Delegate 1
Delegate 2
Delegate 3
…
…

(1) page provides conclusion with hotkey UPDATE
(2) conclusion changes Graph of Entities and #Meta-Infos
(3) conclusion reloads page again, page-init is executed
(4) scopes are recalculated

PAGE_INIT

PAGE_CONCLUSION

Session

Page2 UI entry

boundTo: Graph Entity

Delegate 1
Delegate 2
Delegate 3
…
…

(1) page handles

ReferenzDelegate: Artikel
zu spezifischen
Warengruppen

> Enhance Information downwards
> Update issued when leaving, not when
 entering a field!

> In update conclusion, or in setScopes()
> Assuming, user changed any of the fields
 * recheck all scopes and their values
 * reset values in case they are no longer valid!
 * adopt meta-info appropriately

> Standard behaviour without update conclusion:
 * Flag does not lead to any focus travelling
 * you might use requestFocus() to let focus travel
 to a field, when issuing a flag

> Update Conclusion:
 * Focus has already traveled
 * USE requestFocus() to let the focus travel to the
 intended field, in case of flag
 * Also: use requestFocus() on update actively, e.g.
 scan ean vs. amount
 * Attention: Flag will not issue a pageInit() /
 setScopes()

MEP1 - Multiple Execution Pattern (GRAPH_OWNER)

SEARCH_COMMAND

(1) ResultList of entities
GRAPH_OWNER

checkout graph
validity
change state
checking graph
update selection

Execute a command multiple times on a selected list of entities
without stopping the execution due to cancel BUT in case of an exception

Command has to provide a session (GRAPH_OWNER)
not requiring any user interaction (no page, auto-conclusion-mode)

Enabled condition of all Graph_Owners have to evaluate to true!
Keep care of hotkeys; closing MSG Box - F12, F12, F12, F12 - > save & close of underlying SEARCH?

RO Session

Session

GRAPH_OWNER

checkout graph
validity
change state
checking graph
update selection

Session

GRAPH_OWNER

checkout graph
validity
change state
checking graph
update selection

Session

FINAL_CANCEL

FINAL_OK

FINAL_OK

FINAL_OK

MEP2 - Multiple Execution Pattern (GRAPH_EDIT)

GRAPH_OWNER

checkout graph
validity
change state
checking graph
update selection

GRAPH_EDIT

<user edit>
validity
change state
update selection

Execute a command multiple times on a selected list of entities
with stopping the execution due to cancel or ex

Command must not provide a session (GRAPH_EDIT)
Might have user interaction

Enabled condition for all Graph_Edits have to evaluate to true!
Keep care of hotkeys - F12, F12, F12, F12 - > save & close of GRAPH_OWNER !

Session

FINAL_OK

GRAPH_EDIT

<user edit>
validity
change state
update selection FINAL_OK

GRAPH_EDIT

<user edit>
validity
change state
update selection FINAL_OK

GRAPH_EDIT

<user edit>
validity
change state
update selection

FINAL_CANCEL

G
R
A
P
H

a
c
t
i
v
e
l
y

c
h
a
n
g
e
d

(
n
o

r
e
v
e
r
t
s
)

execution stopped

PP - Print Pattern (aka Status Change Pattern)

> just a shortcut, solve once, use twice
> no code duplication, no maintenance
> test once

> MAIN DOC has to contain all commands ever available
anywhere.
> Compound action is canceled if GRAPH_EDIT does not
eval to true!
> A “reason text” is calculated for the user message “Das
Kommando kann im Zustand XXX nicht angewendet werden”
> only root selection is available, UI hierarchy not
(but yes, right now it is…)

Grph-Edit

Grph-Edit
PRINT

Grph-Edit

Compound ACTION
PRINT

MAIN DOC
GRAPH_OWNER

 PRINT
 GRAPH_EDIT

SEARCH_COMMAND

(1) Specify Filter
(2) Calculate ResultList
(3) Allow Graph_Owners
 to edit entities
(4) Replace entities in
 ResultList due to sel. up.

MAIN DOC
GRAPH_OWNER

Main Editor for entity

checkout graph
------------------------>
validity checks
adjust graph
change state
checkin graph

SEARCH_COMMAND

(1) Specify Filter
(2) Calculate ResultList
(3) Allow Graph_Owners
 to edit entities
(4) Replace entities in
 ResultList due to sel. up.

Situation 1

Situation 2

RO Session Session

RO Session Session

Background: PP II

> Statemachine does now try to indicate what the problem is,
 when disabling a command
> Permissions are also indicated in compound actions
> Enabled-If in commands is not indicate. Cancel would be more appropriate, e.g.
 Using preconditions to inform user: Cancel “You need admin permissions to ..”

> Use same texts in tooltips in case a command is disabled
> Use same text to view messages in compound actions, when inner is disabled.

Compound ACTION
PRINT

MAIN DOC
GRAPH_OWNER

 PRINT
 GRAPH_EDIT

SEARCH_COMMAND

(1) Specify Filter
(2) Calculate ResultList
(3) Allow Graph_Owners
 to edit entities
(4) Replace entities in
 ResultList due to sel. up.

Consistent Validation and Enabled/Disabled Evaluation of Commands

RO Session Session

Background: Compound Action = No UI Handling

MAIN DOC
GRAPH_OWNER

Main Editor for entity
Autoconclusionmode = true

checkout graph

User Interface is not instantiated and not initialize
-> No Selection Controller available
-> No default selections (select first on table) available
-> Only root entity of graph is accessible via getSelected()

-> Root entity of Main Doc is available as getSelected[Objects]() for Graph_Edit
-> There is a rule installed to check that no other getSelected[Objects]() is used
 As argument for the Graph_Edit
-> Graph_Edit might have a UI, or not..

-> Exception Handling okay?

validity checks
adjust graph
change state
checkin graph

Situation 2

Session

GRAPH_EDIT

<user edit>
validity
change state
update selection

FINAL_OK

Compound action

FINAL_OK

SGO - SubGraph Owner Pattern

> might be a shortcut using a UI
> no code duplication, no maintenance
> test once

> Any validation checks in GRAPH_OWNER with FLAG will be
converted to CANCEL (= MsgBox)
> Is it necessary to view flags from GRAPH_OWNER in
GRAPH_EDIT?

> Are the Unit of work boundaries ok? Anti-Pattern
Search/Edit?

SUB_GRAPH_OWNER
ADJUST SOMETHING
(with prompt window)

checkout/checkin

SEARCH_COMMAND

(1) Specify Filter
(2) Calculate ResultList
(3) Allow Graph_Owners
 to edit entities
(4) Replace entities in
 ResultList due to sel. up.

MAIN DOC
GRAPH_OWNER

Main Editor for entity

checkout graph
------------------------>
validity checks
adjust graph
change state
checkin graph

SEARCH_COMMAND

(1) Specify Filter
(2) Calculate ResultList
(3) Allow Graph_Owners
 to edit entities
(4) Replace entities in
 ResultList due to sel. up.

Situation 1

Situation 2

RO Session ?LOCK? Session

RO Session LOCK Session

GRAPH_EDIT

<user edit>
validity
change state
update selection

FINAL_OK

Compound action

FINAL_OK

CEP - Create Edit Pattern

No further validation check in CREATE
After running MAIN_DOC (final_ok, final_ok,
startTransactionFlush)

ensureInSession(<old and new Ent.>) not to omit!
session.isShared()

SEARCH_COMMAND

(1) Specify Filter
(2) Calculate ResultList
(3) Allow Graph_Owners
 to edit entities
(4) Replace entities in
 ResultList due to sel. up.

CREATOR (not main doc?)
GRAPH_OWNER
REVERT OBJECTS: entity

checkout graph
validity checks

Page1, Page2, Page3

create new graph from
existing
session.ensureInSession()

adjust graph
change state
checkin graph

Grph-Edit

Grph-Edit

Grph-Edit

SessionRO Session

(1) Checkout existing document
(2) Gather additional information (UI-Wizzard with multiple pages)
(3) Create a new complex graph

(4) Let user adjust more details by using the appropriate MAIN DOC editor
 -> Adjust & validate new graph
 -> <User can edit>
 -> OK or CANCEL all - Revert
 -> Adjust & validate graph
 -> FINAL_OK checkin new graph

(5) FINAL_OK (checkin existing document) OR FINAL_CANCEL (no EX)

MAIN DOC
GRAPH_OWNER

checkout graph
------------------------>

validity checks
adjust graph
change state
checkin graph

MAIN_DOC Graph Owner

Edit Documents of a certain type - The MAIN_DOC GRAPH_OWNER

> Handles Session + checkout / checkin of graph
> Has a single Page
> Uses cancel, Flag and Conditions
> Must be available almost always! At least in RO mode!

MAIN DOC
GRAPH_OWNER

Main Editor for Entity-Graph

IF session.isShared()
sessionCheckedOut Enitity.size > 0

Entity.id == 0

> Do not checkout Graph again

IF not session.isShared()
sessionCheckedOut Enitity.size == 0

Entity.id > 0

> Checkout Graph for Main Doc
> Use Session-Debugger (CRTL-ALT F6) to see,
 if session is not marked as dirty

Allow for User edits

> Validate Graph in conclusion of “Save and Exit” by using flag
> Graph can also be validated by using flag in onChildTerm() to isolate all validation logic in a single point

> Use flattenGraph() / removeChildren() to clear lists<...> and references in head entity before
 applying pushSelection on parent

Checkout and
error-handling

Preferred way o.D.

Command Creation Information

THP - Task Handling Pattern

No further validation check in FINAL_OK in
predecessor GRAPH_OWNER ! SEARCH_COMMAND

(1) Specify Filter
(2) Calculate ResultList
(3) Allow Graph_Owners
 to edit entities
(4) Replace entities in
 ResultList due to sel. up.

GRAPH_OWNER

checkout graph
validity checks

No Page

Determine how to proceed

adjust graph
change state
checkin graph

SessionRO Session

(1) Checkout entity (task) to determine how to proceed with different MAIN DOCS (documents)
(2) Separate concerns between task and documents fully
(3) Single session (unit of work) for both
(4) BUT different procs and status checks for both

MAIN DOC A
GRAPH_OWNER

checkout graph
----------------->

validity checks
adjust graph
change state
checkin graph

Grph-Edit

Grph-Edit

MAIN DOC B
GRAPH_OWNER

checkout graph
----------------->

validity checks
adjust graph
change state
checkin graph

Grph-Edit

Grph-Edit

Predecessor Command

Successor Command Alternative Successor Command

Compound action on successors

PD TaskHandler
GRAPH_OWNER

No Page

Determine
how to proceed

Order Main Doc
GRAPH_OWNER

checkout / checkin

Complete Order
GRAPH_EDIT

Complex Edit Order
GRAPH_OWNER

checkout / checkin

Complete Order
GRAPH_EDIT

Session

A new programming model - sessionCheckedOut

CMD1: Task-Handler / Creator
CMD2: Main-Doc Editor

Problem: Passing information forward / backward from command to command
Solution: Using command arguments forward, passing info back with objects, references of those
 passed forwards

Or even simpler: Working with shared SESSIONS

FINAL_OK {
session.isShared()
toSelect = sessionCheckedOut Aufgaben.last

}
selection(s) / updates(s) on parent: toSelect

New: also entities saved are added to session as “checked out”

Existing Tasks: sessionCheckedOut Task
Created Task:session.ensureInSession(Entity / list<Entity>); // Existing or created
All Tasks in session: sessionCheckedOut Task

Handling Compositions
DOMAIN 1

> Edit single Invoice + Positions

DOMAIN 2

> Edit Invoice in RekoAkt Context
> Single Session

MAIN DOC
GRAPH_OWNER

Main doc editor for
“Invoice”

Complete INVOICE()

checkout Invoice
------------------------>
check validity
Complete graph info
checkin Invoice

Grph-Edit

Edit Invoice Head

Grph-Edit

Edit Invoice Position

MAIN DOC
GRAPH_OWNER

Main doc editor for
“RekoAkt”

validate()
Complete AKT ()

checkout Akt + Invoices
 ------------------------>
check validity
Complete graph info
checkin

Grph-Edit

Edit Invoice Head

Grph-Edit

Edit Invoice Position

Select Invoice in Table

Grph-Edit

Edit RekoAkt Head

Invoice Head Form

Invoice Pos Form

Akt Head Form

Invoice Table

Invoice Pos Table

UI UI

GCP - Graph Composition Pattern
> Graph with compositions folder (Akt) contains multiple invoices (Rechnungen)
> Use the SAME graph_edit in multiple context, without violating “separation of concerns”
> Composition Pattern (changing an invoice in context folder, leads to changes in complete graph (folder) also
> Changing invoice in a context without a folder, can not lead to any changes

MAIN DOC
GRAPH_OWNER

Main document editor for
“Akt”

checkout Graph
------------------------>
check validity
complete graph info
checkin graph

Grph-Edit on Invoice

invoice.complete()

Grph-Edit on AKT
(akt.complete() in final_ok)

Grph-Edit on AKT
- Akt validate
- Akt amend (calc diff, etc.)

MAIN DOC
GRAPH_OWNER

Main doc editor for
“Invoice”

checkout Graph
------------------------>
check validity
Complete graph info
checkin graph

Situation 1

Situation 2

Grph-Edit on Invoice

(Validation in GRAPH_EDIT possible,
 Validation in Main Doc possible -> flag)

Grph-Edit on Invoice

invoice.complete()

Grph-Edit on Rechnung
(Validation in GRAPH_EDIT possible,
 Validation in Main Doc possible -> flag)

SEARCH_COMMAND

(1) Specify Filter
(2) Calculate ResultList
(3) Allow Graph_Owners
 to edit entities
(4) Replace entities in
 ResultList due to sel. up.

SEARCH_COMMAND

(1) Specify Filter
(2) Calculate ResultList
(3) Allow Graph_Owners
 to edit entities
(4) Replace entities in
 ResultList due to sel. up.

GCP - Graph Composition Pattern

> Do not update or reload any lists, e.g. SEARCH_COMMAND :)
> flag and cancel are now available

MAIN DOC
GRAPH_OWNER

Main document editor for “folder”

checkout Graph
------------------------>
check validity
complete graph info
checkin graph

Grph-Edit on AKT
(akt.complete() in final_ok)

Grph-Edit on AKT
- Akt validate
- Akt amend (calc diff, etc.)

Situation 1

Grph-Edit on Invoice

invoice.complete()

Grph-Edit on Invoice
(Validation in GRAPH_EDIT possible,
 Validation in Main Doc possibl -> flag)

SEARCH_COMMAND

(1) Specify Filter
(2) ResultList
(3) edit entities
(4) Replace entities

Page1 UI entry

boundTo: Graph

-> scopes reevaluation

-> pageChildTerminatedFunc(termOk) {

folder.complete()
 call BusinessLogic.Adjust(folder)

 FLAG
 CANCEL
}

BEP - Base Entity Pattern

MAIN DOC
Main Editor for entity
GRAPH_OWNER

checkout graph

adjust graph
validity checks

validity checks
adjust graph
change state
checkin graph

Update selection

Session

Situation
Report1 extends Report
Report2 extends Report

Requirement
Use single command to edit Report1 & Report2

WHAT IF TWO Reports would be available?
Solution
getSelected(Report) +derived
getSelectedObjects(Report) +derived

Action process.command(Report r)

Table 1

Report_1 (int id 4711)
Report_1 (int id 4712)
Report_1 (int id 4713)

Table 2

Report_2 (int id 4714)
Report_2 (int id 4715)
Report_2 (int id 4716)

Cast ((Report) Report_1)

((Report_1) report) (+??)

Source Object Type + ID

MoWare CMD 2017

(1) Command Patterns

(2) OFXBatchJobs

(5) Lessons learned

(4) Additional Features

(3) OFXTestSuit

OFXBatchJob - WHY?

Inbox

Id: 4711 Id: 4712 Id: 4713 Id: 4714

Consumer

Producer

Create/Produce work items and load an inbox,
which is processed by consumers

M
ul

tip
le

 C
on

su
m

er
s

Consumer

Common structure of all batchjobs

Write jobs like UI applications
 with commands
 -> producer is a SEARCH_COMMAND
 (no transaction)
 -> consumer is a GRAPH_OWNER with
 commitable session

Develop, Experiment, Test and Document a
 Batchjob UI first, experienceable

Structure job in small, comprehensible
Unit-Of-Work items

Specific exception handling on Unit-Of-Work
basis (never quit job)

Simple test the single Unit-Of-Work items
(straight from UI)

Use UI to manually work with job

Allow for aktor like parallelization

OFXBatchJob - The UI FIRST approach

Producer

Search-Command (filter + result)

Consumer

Graph-Owner + Successor

WorkItem +
Journal Entity

FINAL_OK:
commit graph
check process
update selection

FINAL_CANCEL (msg, ex):
commit cancel marker (immediately)
commit journal marker (immediately)

update selection
DO NOT check process !!
Log msg+ex in case of ex

OFXBatchJob - Session Handling

PRODUCER
SEARCH_COMMAND

(1) Specify Filter
(2) Calculate ResultList
(3) load Inbox +
 PostProcessingInbox

CONSUMER
GRAPH_OWNER

Creator / Editor for entity

checkout graph
------------------------>
validity checks
adjust graph
change state
checkin graph

Producer = SEARCH_COMMAND (create/retrieve a list of Work items)
Consumer = GRAPH_OWNER + GRAPH_EDIT (with successor?)

Grph-Edit

SessionRO Session

Ok Graph_Owner + Graph_Edit -> final_ok

Cancel Graph_Owner + Graph_Edit -> final_cancel

Error Graph_Owner + Graph_Edit -> final_cancel

Tec. Exception Graph_Owner + Graph_Edit -> final_cancel + Log MSG

OFXBatchJob - Graph_Owner Cancel Markers

Things to bear in mind:

● called in cases cancel statement is executed or exception occurs. (flag is translated to cancel if no
ui present, like in jobs) Not called when user applies cancel button (-> final_user_cancel)

● In case of an exception, ex parameter is not null and the ex gets logged with log Error, including a
stacktrace

● cancelMsg parameter contains cancel/flag statement text or ex name + msg in case of an exception
● cancelMsg is limmited to <200 chars to prevent any db field overflow when persisting
● Graph is reverted first, before final_cancel_conclusion method is executed
● Marker operations are immediately executed (together in one transaction) in case of an ex or a cancel

(one can adopt the condition for specific behaviour, e.g. only on cancel)
● Clearly, markers will not work in case ex occurs due to db connection loss

OFXBatchJob - Exception Strategy

Idea:
● batchjobs should never crash by running into an exception.
● If an unknown problem occurs just pause for a defined time.
● Administrators can control behaviour via JMX (immediately run producer,

Disable Producer etc.)

> do not forget to include OFXCommandCancelException (technically not an ex but a cancel)
> match ex name (and optionally ex msg) with regular expressions
> specify “doNotWorkUntil” suspend time of job activity + action to take NOOP_JUST_LOG, NO_LOG, etc.
> component throwing ex will instantly stop (prod/cons), other consumers will commit UnitOfWork and stop

OFXBatchJobs - CronHandling

Continuous mode

> define one or multiple runtime periods, excluding service maintenance windows
> define an appropriate wait time, the delay-time

The job will be executed within the runtime periods. After completion of one cycle
(producer + processing by consumers) the job will pause <delay-time> before running
the producer again.

Time specific mode

> formulate one or multiple specific cron expressions, which will trigger at a specific point
 in time
> no delay-time

The job will be executed exactly at the defined cron times. If one cycle
(producer + processing by consumers) ends, a new trigger time is drawn from cron.

If an exception occurs, a whole cycle (producer + processing by consumers) is not “restarted”.
The job will pause according to the ex-strategy pause time, then wait for the next cron expression to trigger.

Cron Handling with Continuous Mode

Run between 00:00 and
3:00 (am/pm)

Every minute, after
each full run.

+ With a delay of
5 Minutes when
inbox is empty

* * 00-03 * * *
* * 12-15 * * *

Delay: 300

Run Producer

Inbox 4 items, 5 sec

Timer Event

Run Consumer
One item, 3 sec

Run Consumer
One item, 3 sec

Run Consumer
One item, 3 sec

Run Consumer
One item, 3 sec

Wait time (5 min)

Run Producer

Inbox 50 items, 5 sec

Run Consumer
One item, 3 sec

Inbox empty

Do not re-run. But wait as defined
with ex-strategy (if longer then wait
time) or delay time.

If Consumer is at maintenance
window boundary, get next timer
event from cron. Continue
processing then.

OFXBatchJob - CronHandling Mode I

Run

00:00:00
12:00:00

0 0 0,12 * * *

(no dedicated service
time window, check
ex-strategies - it
never gives up…)

Run Producer

Inbox 50 items, 5 sec

Timer Event

Run Consumer
One item, 3 sec

Run Consumer
One item, 3 sec

Run Consumer
One item, 3 sec

Run Consumer
One item, 3 sec

EX while producing: re-run producer
in XX sec, according to exception
strategy

EX while consuming: just handle
according to ex strategy. No
interruption

Run Producer

● No consumers should work (else error msg)
● Load inbox via search command
● Process all items with consumers
● Check next time to run producer again

OFXBatchJob 2 Consumer Producer Pair

OFX BatchJob (in MPS)

 Config / Version / Cron-Setting + N-Consumers

Producer Consumer Pair 1

SEARCH_COMMAND

Load inbox with
work items

RO Session

GRAPH_OWNER 1

checkout graph
change state
checking graph

Session

Producer

Consumer

Producer Consumer Pair 2

SEARCH_COMMAND

Load inbox with
work items

RO Session

GRAPH_OWNER 1

checkout graph
change state
checking graph

Session

Producer

Consumer

Independent MODE

Cron trigger
Specific or continous mode

Cron trigger
Specific or continous mode

OFXBatchJob 2 Consumer Producer Pair

OFX BatchJob (in MPS)

 Config / Version / Cron-Setting + N-Consumers

Producer Consumer Pair 1

SEARCH_COMMAND

Load inbox with
work items

RO Session

GRAPH_OWNER 1

checkout graph
change state
checking graph

Session

Producer

Consumer

Producer Consumer Pair 2

SEARCH_COMMAND

Load inbox with
work items

RO Session

GRAPH_OWNER 1

checkout graph
change state
checking graph

Session

Producer

Consumer

dependent MODE

Cron trigger
Specific or continous mode

OFXBatchJob 2 - Proposition

OFX BatchJob (in MPS)

 Config / Version / Cron-Setting + N-Consumers

SEARCH_COMMAND

Load inbox with
work items

RO Session

Consumer

Producer

GRAPH_OWNER 1

checkout graph
change state
checking graph

Session
FINAL_OK

GRAPH_OWNER 2

checkout graph
change state
checking graph

Session
FINAL_OK

IF inboxItem.type == TYPE1

ELSE IF inboxItem.type == TYPE2

SEARCH_COMMAND

Load inbox with
work items

RO Session

Consumer

Producer

GRAPH_OWNER 3

checkout graph
change state
checking graph

Session
FINAL_OK

GRAPH_OWNER 4

checkout graph
change state
checking graph

Session
FINAL_OK

IF inboxItem.type == TYPE1

ELSE IF inboxItem.type == TYPE2

Processing Step 1
z.B. Belege

Processing Step 2
z.B. Tages-Abschlüsse

Proc. Step 3

GRAPH_OWNER 5

checkout graph
change state
checking graph

Session
FINAL_OK

Producer

OFXBatchJob 2 - Pre & Post Processing (Use-Case)

OFX BatchJob (in MPS)

 Config / Version / Cron-Setting + N-Consumers

Pre-Processing for “Task at hand” (Producer / Consumer pair)

Collect all bracketing documents and extract positions (sub-documents). Create
leading (bracketing) document.

Processing for “Task at hand” (Producer / Consumer pair)

Process work items (might be created in pre-proc step) with multiple GOs without
always querying similar to “if first item, create. etc.”

Post-Processing for “Task at hand” (Producer / Consumer pair)

Summarize head documents, status changes, use aggregations on DB
E.g. summarize all “open” head documents.. etc…

Cron-Handling:
> Single Cron
> Run all pairs in a sequence
> Define n-consumers for each
pair

Error-Handling:
> Only Consumer should run
into EX, continue processing
> If EX in handling or while
producing, wait and re-run
producer!

Probably only needed in case of any computational/practical restrictions in order to keep unit-of-work small and manageable,
e.g. large batch imports.
-> Keep Unit-Of-Work small and easily comprehensible
-> Otherwise, doesn’t the single GO do the work?

OFXBatchJob 2 - Pre & Post Processing (Use-Case)

OFX BatchJob (in MPS)

 Config / Version / Cron-Setting + N-Consumers

Producer/Consumer pair A

Collect all bracketing documents and extract positions (sub-documents). Create
leading (bracketing) document.

Producer/Consumer pair B

Process work items (might be created in pre-proc step) with multiple GOs without
always querying similar to “if first item, create. etc.”

Producer/Consumer pair C

Summarize head documents, status changes, use aggregations on DB
E.g. summarize all “open” head documents.. etc…

PC Pair B will never
run without having
PCPair A run
successfully in
advance

PC Pair C will never
run without having
PCPair B and A run
successfully in
advance

BUT: If we have Problems within A => B and C will not run at all !
THUS: Consumer EX -> Wait according to EX -> complete inbox then -> next producer/consumer pair

What can we assure with the new batch job handling, allowing consecutive producer/consumer pairs?

OFXBatchJob 2 - Pre & Post Processing Exception Handling

OFX BatchJob (in MPS)

 Config / Version / Cron-Setting + N-Consumers

Producer/Consumer pair A

Collect all bracketing documents and extract positions (sub-documents). Create
leading (bracketing) document.

Producer/Consumer pair B

Process work items (might be created in pre-proc step) with multiple GOs without
always querying similar to “if first item, create. etc.”

Producer/Consumer pair C

Summarize head documents, status changes, use aggregations on DB
E.g. summarize all “open” head documents.. etc…

Exception in producer or
consumer with wait

Or “Out of cron window”

=> WAIT =>

What can we assure with the new batch job handling, allowing consecutive producer/consumer pairs?

Exception
here

Start with first
producer/consumer pair, not
with pair causing the EX

Never re-run Pair isolated
in dependent mode!

OFXConsumerProducerPair

Producer/Consumer Pair

Producer / Search command
Consumer / GO Command

EX in Producer? -> Inbox empty
- Exit Job?
- Apply waiting time?
- Resched new run for JOB !

EX in Consumer?
- Exit Job?
- Proceed/Ignore (re-add inbox)
- Apply waiting time?
- Resched continuation? OR
- Resched new run for JOB !

EX
Settings
now?

Producer/Consumer Pair

Producer/Consumer Pair

Job Controller

● Cron Handling
● Throttle mode handling
● Run next consumer/producer

after consumer producer done.
● Run support for Job
●

JMX Reporting

> Manual Run Producer
> Disable Producer
> Logs / Traces

JMX Reporting

> Manual Run Producer
> Disable Producer
> Logs / Traces

JMX Reporting

> Manual Run Producer
> Disable Producer
> Logs / Traces

OFXBatchJob - Producer/Consumer Pair

● SEARCH_COMMAND calculates result-list which is loaded as inbox
(items can be loaded as entities from DB or items can be created on
the fly without persisting them - list of ViewObjects)

● single GRAPH_OWNER is consumer to process inbox by using on session per
inbox-item and unit-of work

● Successor-Pattern is often seen in practice

create document BBB from document AAA

● Only via GRAPH_OWNER transaction are work-items marked as done or as “in
error state” (final_ok_conclusion transaction or
 final_cancel_conclusion markers)

=> multiple consumers can be instantiated during runtime to process inbox-items
in parallel with the same GRAPH_OWNER
=> well defined ex behaviour by ex strategy

GRAPH_OWNER

checkout graph
change state
checking graph

Session
FINAL_OK

SEARCH_COMMAND

Load inbox with
work items

RO Session

ConsumerProducer

Apply cancel in command_init of
GRAPH_OWNER to check, if work-item
was already processed in the
meantime! (e.g. by a user manually
via UI)

OFXBatchJob - Producer / Consumer Pair without Consumer

● No Producer / Consumer setup, just one GO
● Single GO comes with a single session and on transaction
● GO is executed according cron setup, all work is done as one

UnitOfWork
● No parallelization or ex handling on small, independent UnitOfWork
● Probably only useful for legacy code integration

ConsumerProducer

GRAPH_OWNER

checkout graph
change state
checking graph

Session
FINAL_OK

Producer/Consumer pair 1

OFXBatchJob - Dependent Producer/Consumer Pair

● Ensure that Items of Type B are processed after Items of Type A
● Due to parallelization constraints two inboxes are needed
● -> Use two Producer/Consumer Pairs
● Former solved by “InboxToPostProcess”

GRAPH_OWNER B

checkout graph
change state
checking graph

Session
FINAL_OK

SEARCH_COMMAND A

Load inbox with work
items

RO Session

Consumer

Producer

Inbox ID: 4711 ID: 4712 ID: 4713

Producer/Consumer pair 2

GRAPH_OWNER C

checkout graph
change state
checking graph

Session
FINAL_OK

SEARCH_COMMAND A

Load inbox with work
items

RO Session

Consumer

Producer

Inbox ID: 4718 ID: 4699

Cron trigger

OFXBatchJob - Producer and Consumer choosing GO

● Inbox contains items which have a common basis but should be handled
differently according a status

● One consumer instance can handle different GRAPH_OWNERS,
calling one of them based on a else/if

● Only one of the GRAPH_OWNERS is chosen to process the inbox-item
● However: Do not build aggregated inboxes just to have a single job ->

use multiple Producer/Consumer Pairs independent mode

GRAPH_OWNER 1

checkout graph
change state
checking graph

Session
FINAL_OK

SEARCH_COMMAND

Load inbox with
work items

RO Session

ConsumerProducer

GRAPH_OWNER 2

checkout graph
change state
checking graph

Session
FINAL_OK

GRAPH_OWNER 3

checkout graph
change state
checking graph

Session
FINAL_OK

IF inboxItem.type == TYPE1

ELSE IF inboxItem.type == TYPE2

ELSE IF inboxItem.type == TYPE3

OFXBatchJob - Multiple Producer/Consumer Pairs “Chain of Documents”

● Create dependent Artifacts in a consecutive manner
● Create Artefacts DDD from CCCs, which are in turn generated from BBBs

create document BBB from document AAA
create document CCC from multiple BBB documents
create document DDD from multiple CCC document

● Idea: Use multiple dependent Producer/Consumer Pairs

Producer/Consumer pair 1

SEARCH_COMMAND
Create List of AAA

GRAPH_OWNER Command
Create BBB from AAA

Producer/Consumer pair 2

SEARCH_COMMAND
Create Temporary ViewObjects
with collections of BBBs

GRAPH_OWNER Command
Create CCC from temporary
ViewObject

Producer/Consumer pair 3

SEARCH_COMMAND
Create Temporary ViewObjects
with collections of CCCs

GRAPH_OWNER Command
Create DDD from temporary
ViewObject

Cron trigger

OFXBatchJob Pre-Producer setup

Pre-producer setup
● Pre-Producer is a GRAPH_OWNER with a commitable session, thus able

to create work-items according rules in periodic manner (via cron)
● Pre-Producer creates all work-items in one UnitOfWork and persists

them
● In case of an exception, ex is handled according ex strategy,

pre-producer will run next according pre-producer cron expression
● Delay mode is not supported for pre-producer

Producer/Consumer setup in familiar manner
Producer will check for manually/pre-producer created work-items
Producer will load inbox / inboxToPostProcess

Consumer(s) will process inbox-items

GRAPH_OWNER AAA

checkout graph
change state
checking graph

Session
FINAL_OK

SEARCH_COMMAND

Load inbox with
work items

RO Session

ConsumerProducerPre-Producer

GRAPH_OWNER

checkout graph
change state
checking graph

Session
FINAL_OK

Inbox

InboxToPostProcess

Bear in mind

1. No complex inbox calculation, no complex logic -> no exceptions in producer
2. Do not build batchjobs in dependent mode if not necessary -> more stability

MoWare CMD 2017

(1) Command Patterns

(2) OFXBatchJobs

(5) Lessons learned

(4) Additional Features

(3) OFXTestSuit

Continuous Delivery & Testing

“The growing code base must be cleaned regularly during development.”

Why clean code?

“A building with broken windows looks like nobody cares about it. So other people stop caring” (Dave
Thomas, Andy Hunt)

“Most Software today is very much like an egyptian pyramid with millions of bricks piled on top of each
other, with no structural integrity, but just done by brute force and thousands of slaves” (Alan Key)

What is clean code?

“Clean code reads like well-written prose” (Grady Booch)

“[...] easy for others to enhance. It has unit and acceptance Test […]” (Dave Thomas)

“(1) Runs all tests, (2) contains no duplication, (3) expresses design ideas, (4) minimizes the number of
entities” (Ron Jeffries)

“Without a test suit they lost the ability to make sure that changes to their code base worked as expected
[...] their defect rate began to rise [...] they started to fear making changes.” (Clean Code)

“It is the tests that keep code flexible, maintainable and reusable.” (Clean Code)

Prerequisite for Continuous Delivery? And a nice docu?

Continuous Delivery & Testing

Independence

Drop Tables
Create them
Create data
LocalDB / TestDB

Independence

Run tests in any order
Run specific tests
Debug specific tests

Repeatable

Create necessary env.
> Data to throw away
> Establish precond.
> Date/Time Handling
>

Fast

Build a suit of tests
Exec them at once
Run them frequently

Refactor

Have a sandbox
Iterate, build a solution
Formulate Tests
Refactor the solution

Self-Validating

Passed / notPassed
Asserts + desc
Graph Compare +
Visualize
Sunny Day/Rainy Day

Documentation

Show story (ies)
Show initial data, show
results
Debug and log progress
with specific elems.

?

Model and check
complete Business
use-cases ?

Start developing in the
sandbox?

I Setup a nice Test-Environment before development

Prepare Test-Environment

> Link necessary Master-Data somehow?
> Delete and re-create important Tables (for project entities)
> Import relevant data (e.g. with insert statements)
> Collect and save important ext. artefacts (e.g. xml files to import)

II Write Tests

Create Tests

> Each Tests should create its own data
> Tests can use dependent tests to do so
> Tests can focus on small service methods with logic (unit tests)
> Tests can also focus on complex procedures, like Graph_owner with multiple Graph_edits
applied (integration tests)
> Use assert statements to check if the tested artefact does, what it should
> Do not use the graph compare functionality (somehow not that cool ..)

>

III Use Tests

> Tests can be run in isolated mode, in order to focus (exec single test only)
> Tests can be run in a special “debug mode”
>

MoWare CMD 2017

(1) Command Patterns

(2) OFXBatchJobs

(5) Lessons learned

(4) Additional Features

(3) OFXTestSuit

Was gehört den eigentlich zur Business-Logik?

Der Service, ein vernachlässigtes Stiefkind? (Domain Service?)
Erzeugen eines Graphen
Transformieren eines Graphen in einen anderen
Graph in sich anpassen (Gesamtsummen etc., D.h. Regeln anwenden)
Prüfen/Validation eines Graphen und dessen Stati anpassen

=> arbeiten mit flag, cancel, error, toast und Texten!
=> what else? Methoden Benennung?
=> Service Architecture & DataStructures vs. Objects & OO Paterns

Flag mit längerem “Hint” Text?
Was ist denn vermutlich falsch?
Könnte mehrere Gründe haben?

Toast and EMIT: System mit
Commands und Events

toast “Der Artikel wurde geändert”
emit ArticleChanged(param?)

toast “Der Artikel wurde den
Stammdaten hinzugefügt”
emit NewArticleCreated(param?)

toast Um aufzuzeichnen? Wer hat was,
wann gmeacht?

Commands, Cancellation and Jobs

Graph Owner Command

Graph Edit Command 1 Graph Edit Command 2

Service

Repository

Job / UI

Statement Verwendbar Auswrikung

cancel Command, Service, Repository Aktuelles Command in Final_CANCEL beenden, > kein Fehler
> in UI mit Meldung an Benutzer
> in Job ohne LOG

flag Command, Service, Repository Unterbrechung der Ausführung in aktueller Seite
> Meldung an Benutzer
> Abbruch des Command-Stack im Job + Log

error Command, Service, Repository Alle Commands des aktuellen Command-Stack (bis zum ersten Graph_Owner) mit
Final_EX beenden
> Meldung an Benutzer (“am System nicht ausgeführt werden”)
> Im Job Log
> Abbruch des aktuellen Commands + Graph_Owner, kein Abbruch des Jobs und
der Search Commands.

toast Command Keine Auswirkung auf Ausführung, Erfolgsmeldung(en) aufzeichnen
> Meldung an Benutzer
> Im Job Log auf Info Niveau / JMX-Message
> Systemweit Event auslösen? “new_article id 10”
> nur bei erfolgreicher Transaktion !

done Command Command in Final_OK beenden

page Command Seite in Command (Wizzard) wechseln

‘Hello %d World’

The ‘ ‘New String‘ ‘ Implementation

Expression

%d integer String.format

%s string String.format

%bd BigDecimal

%ld LocalDate

%dt DateTime

%st Status Status Short Text

%obj “Object” Applying toString() if arg not null

%% Escape % char

Fehlt: Laufzeitunterstützung zur Verwendung von MultiString in Entitäen

MultiStringImplementation.format()

Singleton Pattern + Abgrenzung mit () bei den Parametern

Status Handling

> #Meta Informationen only available for properties
 - setEnabled()
 - setOptional()
 - setLabel()
 - requestFocus()

> Callable at status: getStatusLongText(), getStatusShortText(), getStatusDBText()

Services and Slicing

> Service für spezifische Geschäftslogik statt Service für spezifisches Dokument
> Geschäftslogik verschiedener Dokumententypen in einem Service zusammengefasst
 (statt ein Service pro Dokumententyp)
> “Objektorientierte Unterstützung” Dynamische Delegation zur Laufzeit durch
 ServiceMethode(n)

Service Verbuchen

Retoure
Wareneingang
VerkaufKassa
Umbuchung

Service UILabelsAndTitles

Retoure
Wareneingang
VerkaufKassa
Umbuchung

Service Validation

Retoure
Wareneingang
VerkaufKassa
Umbuchung

Dispatching

> Method overwriting at runtime: available only in Services

> Call Method, which forwards to more specific method regarding the dispatched param

> Provide a default method

> extensive checking by dispatch attribute

MoWare NI 2017

Elements in a ViewObject ListMember can be exchanged with Selection Updates in Search
Command Pattern.

Decoupling of Parent Commands form CommandContainers.

Color Management with Stati and Page Panes

0 and Table Format for “no0”

Dynamic Tiles

Nullable queries with manmap

Shouldn’t we cancel a GraphOwner when we encouter an exception in an graph edit?
Typically Yes !

Same Semantics as in Batch Job?

MoWare 2017

Elements in a ViewObject ListMember can be exchanged with Selection Updates in Search
Command Pattern.

Decoupling of Parent Commands from CommandContainers.

Color Management with Stati and Page Panes

0 and Table Format for “no0”

Dynamic Tiles

Nullable queries with manmap

Shouldn’t we cancel a GraphOwner when we encounter an exception in an graph edit?
Typically Yes !

Same Semantics as in Batch Job?

Conversion Forms3 auf DataUX

> alle notwendigen Branches mergen, dann konvertieren

> extended Doc in: Moware Supplemental Documentation

MoWare CMD 2017

(1) Command Patterns

(2) OFXBatchJobs

(5) Lessons learned

(4) Additional Features

(3) OFXTestSuit

Anti Patterns for Document Centered Applications

> User Perspective: various apps, same
handling, same style, same expectations

> Developer Perspective: assumptions
regarding organization of functionality,
expectations, maintenance and change
(even own code)

> Search and find bugs in other SW (graph
debugger, tests)

Search / Main Doc / Graph-Edit distinction

> do not mix up Search as visualization for editing and
> main doc for editing

How to handle things:
> main doc is for editing visualization (no enabled delegates)
> various graph edits is for editing
> search will be updated via update selection of main doc
> clear separation of search command entities and graph in main doc

> The special Case? No graph available? SGO Pattern?

SEARCH_COMMAND

(1) Specify Filter
(2) Calculate ResultList
(3) Allow Graph_Owners
 to edit entities
(4) Replace entities in
 ResultList due to sel. up.

MAIN DOC
GRAPH_OWNER

Main Editor for entity

checkout graph
------------------------>
validity checks
adjust graph
change state
checkin graph

SessionRO Session

Most importantly: unit of work gets
diluted !

What is the unit of work - what has to be
consistent when multiple users are editing
the same unit of work? (e.g. locking! And
update on checkin!)

Not only relevant for ui standardization,
user understanding, but also for
performance / mem usage on server env.

